Asynchronous Parallel Bound Constraints Pattern Search with

TAMARA G. KOLDA Sandia Nationals Labs

This research was sponsored by the U.S. Department of Energy.

OUTLINE

- Motivation
- Positive Spanning Sets

- Bound Constraints for APPS
- Conclusions & Future Work Example: An Electrical Circuit Simulation
- APPSPACK Software

MOTIVATION

Our goal is to solve the bound constrained optimization problem

min
$$f(x)$$

s.t. $l \le x \le u$

Characterized by...

- An expensive function evaluation,
- calculated, and A gradient that cannot (for all practical purposes) be
- Function values that are too noisy to yield reliable gradient approximations.

problems, especially when the code is "black box". This characterization is true of many optimization engineering

CHOOSING THE SEARCH DIRECTIONS FOR UNCONSTRAINED APPS

The pattern must be chosen so that it positively spans \Re^n .

vector $x \in \mathbb{R}^n$ can be written as **Defn:** A set of vectors $\{d_1, \ldots, d_p\}$ positively spans \mathbb{R}^n if any

$$x = \alpha_1 d_1 + \dots + \alpha_p d_p, \quad \alpha_i \ge 0 \quad \forall i.$$

combination of the basis vectors. That is, any vector can be written as a nonnegative linear

there exists d_i such that $d_i^T x > 0$. **Fact:** If $\{d_1,\ldots,d_p\}$ positively spans \Re^n , then for any $x\neq 0$,

APPS IMPLEMENTATION

- among agents, one per host. The work of the pattern search is divided
- Each agent is in charge of some subset of the search pattern.
- Agents make algorithmic decisions based synchronization. only on available information — there is no

2-D Search
Pattern $d_1 \\ d_2 \\ d_4$

APPS - EXTRA DIRECTIONS

There can be more than the minimal

number of search directions.

least two distinct positive spanning sets. Here, note that we can construct there are at

APPS & FAULT TOLERANCE

directions in the base pattern are reassigned. If there is a fault in a node, then the search

> 2-D Search Pattern

signed to Host 2, but the (-1,-1) direction is not reassigned at all. When Host 1 dies, the (0,-1) direction is reas-

APPS AGENT ALGORITHM

1. Q: Is there a **new best point** reported by another agent?

Y: Store $\{x_{\text{new}}, f_{\text{new}}, \Delta_{\text{new}}, \Pi_{\text{new}}\}$.

 x_{new} is the point

 f_{new} is the function value

 Δ_{new} is the step length

 Π_{new} is the convergence table

Q: Is $f_{\text{new}} < f_{\text{best}}$ (using tie-breaking rules)?

Y: Update best point. Go to Step 1.

N: Go to Step 1.

N: Go to Step 2.

APPS AGENT ALGORITHM

2. Q: Is there a completed local function evaluation?

Y: Store $\{x_{\text{trial}}, f_{\text{trial}}, \Delta_{\text{trial}}, \Pi_{\text{trial}}\}$ and let i indicate the search direction.

Q: Is $f_{\text{trial}} < f_{\text{best}}$ (using tie-breaking rules)?

Y: Update best point and broadcast new best point

N: If the best point has not been updated since the trial point was generated, reduce Δ_{trial} ; else, $\Delta_{\text{trial}} \leftarrow \Delta_{\text{best}}$.

Q: Is $\Delta_{\text{trial}} < tol?$

Y: Update Π_{best} , broadcast a converged single direction message for direction i, and check for convergence using positive basis test. Go to Step 2.

N: Generate a new trial point and begin a new function evaluation. Go to Step 2.

N: Go to Step 3.

APPS AGENT ALGORITHM

- 3. Is a converged search direction reported by another agent?
- Y: Store $\{x_{\text{new}}, f_{\text{new}}, \Delta_{\text{new}}, \Pi_{\text{new}}\}.$
- Q: Is $f_{\text{new}} < f_{\text{best}}$ (using tie-breaking rules)?
- Y: Update best point, and check for convergence using positive basis test. Go to Step 3.
- N: Q: Is $x_{\text{new}} = x_{\text{best}}$?
- Y: Merge Π_{new} and Π_{best} , and check for convergence using positive basis test.
- Go to Step 3.
- N: Go to Step 3.
- N: Go to Step 1.

CHECKING CONVERGENCE FOR UNCONSTRAINED APPS

have converged to contain a positive basis We have *convergence* when enough search directions

squares problems of the form NNLS problems. Solve n+1 nonnegative least that \mathcal{V} is a positive spanning set by solving a series of Given a set of vectors $\mathcal{V} = \{v_1, v_2, \dots, v_m\}$, we verify

$$||Vx - b||$$
 s.t. $x_i \ge 0 \ \forall i$

for $b = \{e_1, \ldots, e_n, -e\}$ or any known positive basis.

All have residual zero iff V is a positive spanning set.

APPS WITH BOUND CONSTRAINTS

- Must use plus/minus unit vectors for search.
- Infeasible points are mapped to the boundary.
- Change the positive basis test for convergence.
- Restarting procedure for failed search directions must always keep base pattern active.

ACTIVE & INACTIVE BOUND CONSTRAINTS

CHECKING CONVERGENCE FOR BOUND CONSTRAINED APPS

have converged to contain a projected positive basis We have convergence when enough projected search directions

problems of the form a projected positive spanning set by solving a series of NNLS Given a set of vectors $\mathcal{V} = \{v_1, v_2, \dots, v_m\}$, we verify that \mathcal{V} is

$$||P(V)x-b||$$
 s.t. $x_i > 0 \ \forall i$

for each $b \in \mathcal{B}$, where

$$\mathcal{B} = \{ e_i \mid \text{upper bound } i \text{ is inactive } \} \cup \{ -e_i \mid \text{lower bound } i \text{ is inactive } \}$$

All have residual zero iff V is a positive spanning set.

Example: An Electrical Circuit SIMULATION

- Variables: inductances, capacitances, diode saturation core parameters currents, transistor gains, leakage inductances, and transformer
- Simulation Code: SPICE3

$$f(x) = \sum_{t=1}^{N} \left(V_t^{\text{SIM}}(x) - V_t^{\text{EXP}}\right)^2,$$

x = 17 unknown characteristics

 $V_t^{ ext{SIM}}(x)$ $V_{\!\scriptscriptstyle +}^{
m EXP}$ = Simulation voltage at time t= Experimental voltage at time t

N = Number of timesteps

The "Unconstrained" Problem

Scaling of the variables is handled in the same way as it is for the bound constrained problem

$$s_i = rac{u_i - l_i}{100}$$

scaling the x-vectors. The search directions are stretched rather than 100

When an out-of-bounds x-vector is sent to the function evaluation, a value of $+\infty$ is returned.

Numerical Results for Circuit Problem

4	39	414	2440	45.1	34	UC
3	36	448	2750	25.3	34	BC
Gos	Evals	(sec)	(sec)	f(x)	Dirs	
No-	Func.	Idle	Time	Final	Search	Type

BC = Bound Constrained
UC = Unconstrained

Conclusions

- The ability to handle bound constraints is incorporated into APPS with minor changes.
- The most significant change is in the positive basis test, constraints where we now incorporate information about active
- Numerical results indicate that using bound constraints in APPS may improve the final result

FUTURE WORK

- Adding linear and nonlinear constraints.
- Convergence for bound constrained APPS.

APPSPACK

http://csmr.ca.sandia.gov/projects/apps.html

RECENT HIGHLIGHTS

- Added support for bound constraints
- Added MPI support (Alton Patrick)

COMING SOON

- Function Value Cache (Alton Patrick)
- Model-Assisted Pattern Search (Sarah Brown)